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Background: Studies estimating health effects of long-term air pollution exposure often use a two-
stage approach: building exposure models to assign individual-level exposures, which are then used 
in regression analyses. This requires accurate exposure modeling and careful treatment of exposure 
measurement error.

oBjective: To illustrate the importance of accounting for exposure model characteristics in two-
stage air pollution studies, we considered a case study based on data from the Multi-Ethnic Study of 
Atherosclerosis (MESA).

Methods: We built national spatial exposure models that used partial least squares and universal 
kriging to estimate annual average concentrations of four PM2.5 components: elemental carbon 
(EC), organic carbon (OC), silicon (Si), and sulfur (S). We predicted PM2.5 component exposures 
for the MESA cohort and estimated cross-sectional associations with carotid intima-media thick-
ness (CIMT), adjusting for subject-specific covariates. We corrected for measurement error using 
recently developed methods that account for the spatial structure of predicted exposures.

results: Our models performed well, with cross-validated R2 values ranging from 0.62 to 0.95. 
Naïve analyses that did not account for measurement error indicated statistically significant associa-
tions between CIMT and exposure to OC, Si, and S. EC and OC exhibited little spatial correlation, 
and the corrected inference was unchanged from the naïve analysis. The Si and S exposure surfaces 
displayed notable spatial correlation, resulting in corrected confidence intervals (CIs) that were 50% 
wider than the naïve CIs, but that were still statistically significant.

conclusion: The impact of correcting for measurement error on health effect inference is concor-
dant with the degree of spatial correlation in the exposure surfaces. Exposure model characteristics 
must be considered when performing two-stage air pollution epidemiologic analyses because naïve 
health effect inference may be inappropriate.

citation: Bergen S, Sheppard L, Sampson PD, Kim SY, Richards M, Vedal S, Kaufman JD, 
Szpiro AA. 2013. A national prediction model for PM2.5 component exposures and measurement 
error–corrected health effect inference. Environ Health Perspect 121:1017–1025; http://dx.doi.
org/10.1289/ehp.1206010

Introduction
The relationship between air pollution and 
adverse health outcomes has been well docu
mented (Pope et al. 2002; Samet et al. 2000). 
Many studies focus on particulate matter, 
speci fically particulate matter ≤ 2.5 µm in 
aerodynamic diameter (PM2.5) (Kim et al. 
2009; Miller et al. 2007). Health effects of 
PM2.5 may depend on characteristics of the 
particles, including shape, solubility, pH, or 
chemical composition (Vedal et al., in press), 
and a deeper understanding of these differ
ential effects could help inform policy. One 
of the challenges in assessing the impact of 
different chemical components of PM2.5 in 
an epidemiologic study is the need to assign 
exposures to study participants based on 
monitoring data from different locations (i.e., 
spatially misaligned data). When doing this 
for many components, the prediction proce
dure needs to be streamlined in order to be 
practical. Whatever the prediction algorithm, 
using the estimated rather than true exposures 
induces measurement error in the subsequent 
epidemiologic analysis. Here we describe a 
flexible and efficient prediction model that 

can be applied on a national scale to estimate 
longterm exposure levels for multi ple pollut
ants and that implements existing methods 
of correcting for measurement error in the 
health model.

Current methods for assigning exposures 
include landuse regression (LUR) with geo
graphic information system (GIS) covariates 
(Hoek et al. 2008) and universal kriging, 
which also exploits residual spatial structure 
(Kim et al. 2009; Mercer et al. 2011). Often 
hundreds of candidate correlated GIS covari
ates are available, necessi tating a dimension 
reduction procedure. Variable selection meth
ods that have been considered in the literature 
include exhaustive search, stepwise selection, 
and shrinkage by the “lasso” (Mercer et al. 
2011; Tibshirani 1996). However, variable 
selection methods tend to be computation
ally intensive, feasible perhaps when consider
ing a single pollutant but quickly becoming 
impractical when develop ing predictions for 
multi ple pollutants. A more streamlined alter
native is partial least squares (PLS) regression 
(Sampson et al. 2009), which finds a small 
number of linear combinations of the GIS 

covariates that most efficiently account for 
variability in the measured concentrations. 
These linear combinations reduce the covari
ate space to a much smaller dimension and 
can then be used as the mean structure in a 
LUR or universal kriging model in place of 
individual GIS covariates. This provides the 
advantages of using all available GIS covariates 
and eliminating potentially timeconsuming 
variable selection processes.

Using exposures predicted from spatially 
misaligned data rather than true exposures 
in health models introduces measurement 
error that may have implications for ^βx, the 
estimated health model coefficient of interest 
(Szpiro et al. 2011b). Berksonlike error that 
arises from smoothing the true exposure sur
face may inflate the SE of ^βx. Classicallike 
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error results from estimating the prediction 
model parame ters and may bias ^βx in addi
tion to inflating its SE. Bootstrap methods 
to adjust for the effects of measurement error 
have been discussed by Szpiro et al. (2011b).

Here we present a case study to illustrate 
a holistic approach to twostage air pollu
tion epidemiologic modeling, which includes 
exposure modeling in the first stage and 
health modeling that incorporates measure
ment error correction in the second stage. We 
build national exposure models using PLS 
and universal kriging, and employ them to 
estimate longterm average concentrations 
of four chemical species of PM2.5—elemen
tal carbon (EC), organic carbon (OC), sili
con (Si), and sulfur (S)—selected to reflect a 
variety of different PM2.5 sources and forma
tion processes (Vedal et al., in press). After 
developing the exposure models, we derive 
predictions for the MultiEthnic Study of 
Atherosclerosis (MESA) cohort. These predic
tions are used as the covariates of interest in 
health analyses assessing associations between 
carotid intimamedia thickness (CIMT), a 
subclinical measure of athero sclerosis, and 
exposure to PM2.5 components. We apply 
measurement error correction methods to 
account for the fact that predicted rather 
than true exposures are being used in these 
health models. We discuss our results and 
their implications with regard to the effect 
of spatial correlation in exposure surfaces on 
estimated associations between exposures and 
health outcomes.

Data
Monitoring data. Data on EC, OC, Si, 
and S were collected to build the national 
models. These data consisted of annual aver
ages from 2009–2010 as measured by the 
Interagency Monitoring for Protected Visual 
Environments (IMPROVE) and Chemical 
Speciation Network (CSN) of the U.S. 
Environmental Protection Agency (U.S. EPA 
2009). The IMPROVE monitors are a nation
wide network located mostly in remote areas. 
The CSN monitors are located in more urban 
areas. These two networks provide data that 
are evenly dispersed throughout the lower 48 
states (Figure 1).

All IMPROVE and CSN monitors that 
had at least 10 data points per quarter and 
a maximum of 45 days between measure
ments were included in our analyses. Si and S 
measurements were averaged over 1 January 
2009–31 December 2009. The EC/OC data 
set consisted of measurements from 204 
IMPROVE and CSN monitors averaged over 
1 January 2009–31 December 2009, and 
measurements from 51 CSN monitors aver
aged over 1 May 2009–30 April 2010. We 
used the latter period because the measure
ment protocol used by CSN monitors prior 

to 1 May 2009 was incompatible with the 
IMPROVE network protocol. Comparing 
values averaged over 1 May 2009–30 April 
2010 to those averaged over 1 January 2009–
31 December 2009 indicated little difference 
between the time periods (data not shown). 
The annual averages were squareroot trans
formed prior to modeling.

Geographic covariates. Approximately 
600 LUR covariates were available for all 
monitor and subject locations. These included 
distances to A1, A2, and A3 roads [census 
feature class codes (CFCCs; U.S. Census 
Bureau 2013)]; land use within a given buf
fer; population density within a given buffer; 
and Normalized Difference Vegetation Index 
(NDVI; National Oceanic and Atmospheric 
Administration 2013), which measures the 
level of vegetation in a monitor’s vicinity. 
CFCC A1 roads are limitedaccess highways; 
A2 and A3 roads are other major roads such 
as county and state highways without lim
ited access (Mercer et al. 2011). For NDVI 
a series of 23 monitor specific, 16day com
posite satellite images were obtained, and the 
pixels within a given buffer were averaged for 
each image. PLS incorporated the 25th, 50th, 
and 75th percentile of these 23 averages. The 
median of “highvegetation season” image 
averages (defined as 1 April–30 September) 
and “lowvegetation season” averages 
(1 October–31 March) were also included. 
The geographic covariates were preprocessed 
to eliminate LUR covariates that were too 
homogeneous or outlierprone to be of use. 
Specifically, we eliminated variables with 
> 85% identical values, and those with the 
most extreme standardized outlier > 7. We 
logtransformed and truncated all distance 
variables at 10 km, and computed additional 
“compiled” distance variables such as mini
mum distance to major roads and distance 
to any port. These compiled variables were 
then subject to the same inclusion criteria. All 
selected covariates were mean centered and 
scaled by their respective SDs.

MESA cohort. MESA is a population
based study that began in 2000, with a cohort 
consisting of 6,814 participants from six 
U.S. cities: Los Angeles, California; St. Paul, 
Minnesota; Chicago, Illinois; Winston
Salem, North Carolina; New York, New 
York; and Baltimore, Maryland. Four ethnic/
racial groups were targeted: white, Chinese 
American, African American, and Hispanic. 
All participants were free of physician
diagnosed cardio vascular disease at time of 
entrance. [For additional details about the 
MESA study, see Bild et al. (2002).] These 
participants were also utilized in the Multi
Ethnic Study of Athero sclerosis and Air 
Pollution (MESA Air), an ancillary study 
to MESA funded by the U.S. EPA to study 
the relationship between chronic exposure 

to air pollution and progression of subclini
cal cardio vascular disease (Kaufman et al. 
2012). Both the MESA and MESA Air stud
ies were approved by the institutional review 
board (IRB) at each site, including the IRBs 
at the University of California, Los Angeles 
(Los Angeles, CA), Columbia University 
(New York, NY), Johns Hopkins University 
(Baltimore, MD), the University of Minnesota 
(MinneapolisSt. Paul, MN), Wake Forest 
University (WinstonSalem, NC), and 
Northwestern University (Evanston, IL). All 
subjects gave written informed consent. 

We selected the CIMT end point in 
MESA as the health outcome for our case 
study. CIMT, a subclinical measure of athero
sclerosis, was measured by Bmode ultrasound 
using a GE Logiq scanner (GE Healthcare, 
Wauwatosa, WI), and the end point was 
quantified as the right far wall CIMT mea
sures conducted during MESA exam 1, which 
took place during 2000–2002 (Vedal et al., 
in press). We considered the 5,501 MESA 
participants who had CIMT measures during 
exam 1; our analysis was based on the 5,298 
MESA participants who had CIMT mea
sures during exam 1 and complete data for all 
selected model covariates.

Methods
The first stage of the twostage approach 
included building the exposure models using 
PLS as the covariates in universal kriging 
models. We used crossvalidation (CV) to 
select the number of PLS scores, determine 
how reliable predictions from each expo
sure model were, and assess the extent to 
which spatial structure was present for each 
pollutant. The health modeling stage of 
the twostage approach included the health 
models we fit and the measurement error 
correction methods we employed. [For more 
detailed technical exposition, see Bergen 
et al. (2012).]

Spatial prediction models. Notation. Let 
Xt* denote the N* × 1 vector of observed 
squareroot transformed concentrations at 
monitor locations; R* the N* × p matrix of 
geographic covariates at monitor locations; 
Xt the N × 1 vector of unknown squareroot 
transformed concentrations at the unobserved 
subject locations; and R the N × p matrix of 
geographic covariates at the subject locations. 
Note that for our exposure models, Xt* and 
Xt are dependent variables, and R* and R 
are independent variables. We used PLS to 
decompose R* into a set of linear combina
tions of much smaller dimension than R*. 
Specifically,

 R*H = T*.

Here, H is a p × k matrix of weights for the 
geographic covariates, and T* is an N* × k 
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matrix of PLS components or scores. These 
scores are linear combinations of the geo
graphic covariates found in such a way that 
they maximize the covariance between Xt* 
and all possible linear combinations of R*. 
One might notice similarities between PLS 
and principal components analysis (PCA). 
Although the two methods are similar 
in that they are both dimension reduction 
methods, the scores from PLS maximize the 
covariance between Xt* and all other pos
sible linear combinations of R*, whereas the 
scores from PCA are chosen to explain as 
much as possible the covariance of R*. [For 
more details see Sampson et al. (2013)]. 
PLS scores at  unobserved locations are then 
derived as T = RH.

Once the PLS scores T and T* were 
obtained for the subject and monitor
ing locations, respectively, we assumed the 

following joint model for unobserved and 
observed exposures:

 
.X

X T
* * *
t

t h
a= +T h

d c cn m m
 

[1]

Here α is a vector of regression coefficients for 
the PLS scores, and η and η* are N × 1 and 
N* × 1 vectors of errors, respectively. Our pri
mary exposure models assumed that the error 
terms exhibited spatial correlation that could 
be modeled with a kriging variogram parame
terized by a vector of parame ters θ = (τ2, σ2, 
φ) (Cressie 1992). The nugget, τ2, is interpre
table as the amount of varia bility in the pollu
tion exposures that is not explained by spatial 
structure; the partial sill, σ2, is interpretable 
as the amount of variability that is explained 
by spatial structure; and the range, φ, is inter
pretable as the maximum distance between 

two locations beyond which they may no 
longer be considered spatially correlated. We 
estimated these parame ters and the regression 
coefficients α via profile maximum likelihood. 
Once these parame ters were estimated, we 
obtained predictions at unobserved locations 
by taking the mean of Xt conditional on Xt* 
and the estimated exposure model parame ters. 
Because our measurement error correction 
methods rely on a correctly specified exposure 
model, we took care to choose the bestfitting 
kriging variogram to model our data. We ini
tially fit exponential variograms for all four 
pollutants and investigated whether plots of 
the estimated variogram appeared to fit the 
empirical variogram well. If they appeared 
to fit poorly, we investigated spherical and 
cubic variograms. The exponential variogram 
fit well for EC, OC, and S, but provided a 
poor fit for Si (data not shown). We therefore 

Figure 1. Locations of IMPROVE and CSN monitors and predicted national average PM2.5 component concentrations from final predictions models. (A) EC, (B) OC, 
(C) Si, and (D) S. Insets show predictions for St. Paul, MN.

NN

NN

High: 1.00 IMPROVE
CSNLow: 0.03

High: 0.48 IMPROVE
CSNLow: 0.03

High: 1.15 IMPROVE
CSNLow: 0.09

High: 2.91 IMPROVE
CSNLow: 0.26

0 215 430 860 1,290
km km

kmkm

0 215 430 860 1,290

0 215 430 860 1,290 0 215 430 860 1,290

S (µg/m3)Si (ng/m3)

OC (µg/m3)EC (µg/m3)



Bergen et al.

1020 volume 121 | number 9 | September 2013 • Environmental Health Perspectives

examined cubic and spherical variograms and 
found the spherical variogram provided a 
much better fit and used it to model Si in our 
 exposure models.

As a comparison to our primary kriging 
models, we also derived predictions from PLS 
alone without fitting a kriging variogram. This 
is analogous to a pure LUR model but using 
the PLS scores instead of actual geographic 
covariates. For this analysis η and η* were 
assumed to be independent, and α was esti
mated using a leastsquares fit to regression of 
Xt* on T*. PLSonly predictions at the unob
served locations were then derived as the fit
ted values from this regression using the PLS 
scores at the subject locations.

CV and model selection. We used 10fold 
CV (Hastie et al. 2001) to assess the models’ 
prediction accuracy, to select the number of 
PLS components to use in the final prediction 
models, and to compare predictions generated 
using PLS only to our primary models, which 
used both PLS and universal kriging. Data 
were randomly assigned to 1 of 10 groups. 
One group (a “test set”) was omitted, and the 
remaining groups (a “training set”) were used 
to fit the model and generate test set predic
tions. Each group played the role of test set 
until predictions were obtained for the entire 
data set. At each iteration, the following steps 
were taken to crossvalidate our primary mod
els (similar steps were followed to derive cross
validated predictions that used PLS only):
•	PLS was fit using the training set, and K 

scores were computed for the test set, for 
K = 1,...,10.

•	Universal kriging parame ters θ and coef
ficients α were estimated via profile maxi
mum likelihood using the training set. 
The first K PLS scores correspond to T* in 
Equation 1, for K = 1,...,10.

•	Predictions were derived using the first K 
PLS components and the corresponding 
universal kriging, using kriging parame ters 
estimated from the training set.

We used the R package pls to fit the PLS. 
universal kriging was performed using the R 
package geoR. The bestperforming models 
were selected out of those that used both PLS 
and kriging based on their crossvalidated root 
mean squared error of prediction (RMSEP) 
and corresponding R2. For a data set with N* 
observations and corresponding predictions, 
the formulae for these performance metrics 
are given by

 *RMSEP N
Obs Pred*

i ii
N

1
2

=
-= ^ h/

 [2]

and

 
, .maxR Var Obs

RMSEP0 12
2

= - ^d h n  
[3]

These metrics are sensitive to scale; accord
ingly, they are useful for evaluating model 
performance for a given pollutant but not for 
comparing models across pollutants.

Health modeling. Disease model. Multi
variable linear regression models were used to 
estimate the effects of each individual PM2.5 
component exposure on CIMT. Each model 
included a single PM2.5 component along 
with a vector of subjectspecific  covariates. Let 
Y be the 5,298 × 1 vector of health outcomes 
for the 5,298 MESA participants included in 
the analysis, W the 5,298 × 1 vector of expo
sure predictions on the untransformed scale, 
and Z a matrix of potential confounders. We 
assumed linear relationships between Y, the 
true exposures, and Z, and fit the following 
equation via ordinary least squares (OLS):

 E(Y) = β0 + Wβx + Zβz . [4]

Measurement error correction. The model 
in Equation 4 was fit using the predicted 
exposures W instead of the true exposures as 
the covariate of interest. Using predictions 
rather than true exposures in health modeling 
introduces two sources of measurement error 
that potentially influence the behavior of ^βx. 
Berksonlike error arises from smoothing the 
true exposure surface and could inflate the SE 
of ^βx. Classicallike error arises from estimating 
the exposure model parame ters α and θ. The 
classicallike error potentially inflates the SE 
of ^βx and could also bias the point estimate. 
We implemented the parame ter bootstrap, an 
efficient method to assess and correct for the 
effects of measurement error. [See Szpiro et al. 
(2011b) for additional background and details.]

We used the parame ter bootstrap in the 
context of predictions that use both PLS and 
universal kriging; the approach would be very 
similar if PLS alone was used (although we 
did not implement that correction here).
1. Estimate a sampling density for α̂ and ^θ 

with a multivariate normal distribution.
2. For j = 1,...,B bootstrap samples

a. Simulate new “observed” bootstrap 
exposures at monitoring locations from 
Equation 1 and health outcomes from 
Equation 4.

b. Sample new exposure model parame
ters and, from the sampling density 
estimated in step 1, using a constant 
covariance matrix multiplied by a sca
lar λ ≥ 0. λ controls the variability of 
(α̂j, 

^θj): the larger λ is, the greater the 
variability of (α̂j, 

^θj).
c. Use the simulated health outcomes and 

newlysampled exposure model parame
ters to derive Wj.

d. Calculate ^βx,j using Wj by OLS.
3. Let  Eλ(^β x

B)  denote  the empir ica l 
mean of the ^βx,j. The estimated bias is 
defined as Biasλ(^βx) = Eλ(^βx

B)–E0(^βx
B) 

with corresponding biascorrected effect 
estimate βx,λ

corrected = ^βx–Biasλ(
^βx).

4. Estimate the bootstrap SE as

.SE

E

B

,X j
B

j
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X
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For our implementation of the parame ter 
bootstrap, we set B = 30,000 and λ = 1.

The goal of the parame ter bootstrap is to 
approximate the sampling properties of the 
measurement errorimpacted ^βx that would 
be estimated if we performed our twostage 
analysis with many actual realizations of 
monitoring observations and subject health 
data sets. Accordingly, step 2(a) gives us B 
new “realizations” of our data. For λ = 1, 
step 2(b) accounts for the classicallike error 
by resampling the exposure model parame
ters. Step 2(c) accounts for the Berksonlike 
error by smoothing the true exposure surface. 
Step 2(d) then calculates B new ^βx,j’s, the sam
pling properties of which have incorporated 
all sources of measurement error. Comparing 
these to the mean of bootstrapped ^βx,j derived 
using fixed exposure model parame ters (i.e., 
λ = 0) gives us an approximation of the bias 
induced by the classicallike error (step 3), and 
the empirical SD approximates the SE that 
accounts for both sources of measurement 
error (step 4).

We also implemented the parame ter boot
strap for λ = 0. This is equivalent to the “partial 
parametric bootstrap” described by Szpiro et al. 
(2011b), which accounts for the Berksonlike 
error only because the exposure surface is still 
smoothed, but with fixed parame ters.

A desirable trait of the parame ter boot
strap is the ability to “tune” the amount of 
the classicallike error by varying λ, which 
allows us to investigate how variability in the 
sampling distribution of (α̂j, 

^θj) affects the bias 
of ^βx. This can be useful in refining our boot
strap bias estimates by simulation extrapola
tion (SIMEX) (Stefanski and Cook 1995). 
(For additional information on our approach 
to SIMEX and the results of applying it to 
the MESA data, see Supplemental Material, 
pp. 2–3 and Figure S1.)

Results
Data. Monitoring data. Mean concentrations 
of the four pollutants according to monitoring 
network are shown in Table 1. EC and OC 
concentrations measured by CSN monitors 
tended to be higher than concentrations mea
sured by IMPROVE monitors. Average Si and 
S concentrations measured by CSN moni
tors were also higher than the IMPROVE 
averages; however, relative to their SDs, the 
differences between CSN and IMPROVE 
monitors in Si and S concentrations were not 
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as great as the differences between EC and 
OC concentrations.

Geographic covariates. The geographic 
variables that we used are listed in Table 2. 
Most of these variables were used for modeling 
all four pollutants, but not all. The following 
variables were used for modeling Si and S but 
not EC and OC: PM2.5 and PM10 emissions, 
streams and canals within a 3km buffer, other 
urban or builtup land use within a 400m 
buffer, lakes within a 10km buffer, industrial 
and commercial complexes within a 15km 
buffer, and herbaceous rangeland within a 
3km buffer. On the other hand, the following 
variables were used for modeling EC and OC 
but not Si and S: industrial land use within 
1 and 1.5km buffers.

The distributions of selected geographic 
covariates are shown according to monitor
ing network and MESA locations in Table 1. 
Although relatively few monitors belonging 
to either IMPROVE or CSN were within 
150 m of an A1 road, there was a larger pro
portion of CSN monitors within 150 m of 
an A3 road (44%) than IMPROVE monitors 
(19%), consistent with the placement of CSN 
monitors in more urban locations compared 
with IMPROVE monitors (Table 1). The 
median distance to commercial and service 
centers was much smaller for CSN moni
tors (127 m vs. 4,696 m), and the median 
population density was much larger for 
CSN monitors (805 persons/mi2) than for 
IMPROVE monitors (only 3 persons/mi2). 
Median summer NDVI values within 250 m 
were slightly smaller for CSN monitors than 
for IMPROVE monitors, consistent with the 
placement of IMPROVE monitors in greener 
areas. Geographic covariate distributions 
among MESA participant locations were more 
consistent with the CSN monitors, as is espe
cially evident for the number of sites < 150 m 
from an A3 road and median population den
sity (Table 1). Density plots of the geographic 
covariates for monitoring and subject locations 
indicated noticeable overlap for all geographic 
covariates (data not shown), suggesting differ
ences in geographic covariates between moni
tor and MESA locations were consistent with 
the concentration of MESA subjects in urban 
locations, not extrapolation beyond our data.

MESA cohort. Distributions of health 
model covariates among MESA cohort par
ticipants are summarized in Table 3. The 
mean CIMT (0.68 ± 0.19 mm); mean age 
(62 ± 10 years); sex (52% female); race (39% 
white, 12% Chinese American, 27% African 
American, and 22% Hispanic); and status 
(44% hypertension status and 15% statin 
use) were determined by questionnaire (Bild 
et al. 2002). The highest percentage of par
ticipants resided in Los Angeles (19.7%), but 
the distribution across the six cities was quite 
homogeneous. Only the 5,298 participants 

Table 1. Summary data for observed pollution concentrations (mean ± SD) at monitoring networks; 
predicted concentrations (mean ± SD) for the MESA cohort at exam 1 and summaries of selected LUR 
covariates.

Covariates IMPROVE CSN All monitors MESA Air
Sites (n) 190 98 288 5501
EC (µg/m3) 0.19 ± 0.18 0.66 ± 0.24 0.37 ± 0.30 0.74 ± 0.18
OC (µg/m3) 0.93 ± 0.55 2.23 ± 0.71 1.43 ± 0.88 2.17 ± 0.36
Si (ng/m3) 0.16 ± 0.12 0.10 ± 0.09 0.14 ± 0.11 0.09 ± 0.03
S (µg/m3) 0.41 ± 0.27 0.69 ± 0.25 0.51 ± 0.29 0.78 ± 0.15
Sites < 150 m to an A1 road [n (%)] 4 (2) 3 (3) 7 (2) 249 (6)
Sites < 150 m to an A3 road [n (%)] 36 (19) 43 (44) 79 (27) 2,763 (50)
Median distance to comm (m) 4,696 127 1,235 302
Median pop densa (persons/mi2) 3 805 20 3,496
NDVIb 150 140 146 137

Abbreviations: comm, commercial or service centers; pop dens, population density.
aPersons per square mile for census block/block group to which monitor/ subject belongs. bMedian value of summer 
NDVI medians within 250-m buffer.

Table 2. LUR covariates (Figure 2 abbreviations) and (where applicable) covariate buffer sizes that made 
it through preprocessing and were considered by PLS. 

Abbreviation Variable description Buffer sizes
Distance to 
features 

A1 roada NA
Nearest roada NA
Airporta NA
Large airporta NA
Porta NA
Coastlinea,b NA
Commercial or service centera NA
Railroada NA
Rail yarda NA

SO2 SO2 Emissionsc 30 km
PM2.5 PM2.5

c,d 30 km
PM10 PM10

c,d 30 km
NOx NOx

c 30 km
Population Population density 500 m, 1 km, 1.5 km, 2 km, 2.5 km, 3 km, 5 km, 

10 km, 15 km
NDVI–winter Median winter 250 m, 500 m, 1 km, 2.5 km, 5 km, 7.5 km, 10 km
NDVI–summer Median summer 250 m, 500 m, 1 km, 2.5 km, 5 km, 7.5 km, 10 km
NDVI–Q75 75th percentile 250 m, 500 m, 1 km, 2.5 km, 5 km, 7.5 km, 10 km
NDVI–Q50 50th percentile 250 m, 500 m, 1 km, 2.5 km, 5 km, 7.5 km, 10 km
NDVI–Q25 25th percentile 250 m, 500 m, 1 km, 2.5 km, 5 km, 7.5 km, 10 km
Transport Transportation, communities, and utilities 750 m, 3 km, 5 km, 10 km, 15 km
Transition Transitional areas 15 km
Stream Streams and canals 3 kmd, 5 km, 10 km, 15 km
Shrub Shrub and brush rangeland 1.5 km, 3 km, 5 km, 10 km, 15 km
Residential Residential 400 m, 500 m, 750 m, 1 km, 1.5 km, 3 km, 5 km, 

10 km, 15 km
Other urban Other urban or built-up 400 md, 500 m, 1.5 km, 3 km, 5 km, 10 km, 15 km
Mixed range Mixed rangeland 3 km, 5 km, 10 km, 15 km
Mixed forest Mixed forest land 750 m, 1 km, 1.5 km, 3 km, 5 km, 10 km, 15 km
Lakes Lakesd 10  km
Industrial Industrial 1 kme, 1.5 kme, 3 km, 5 km, 10 km, 15 km
Indust/comm Industrial and commercial complexesd 15 km
Herb range Herbaceous rangeland 3 kmd, 5 km, 10 km
Green Evergreen forest land 400 m, 500 m, 750 m, 1 km, 1.5 km, 3 km, 5 km, 

10 km, 15 km
Forest Deciduous forest land 750 m, 1 km, 1.5 km, 3 km, 5 km, 10 km, 15 km
Crop Cropland and pasture 400 m, 500 m, 750 m, 1 km, 1.5 km, 3 km, 5 km, 

10 km, 15 km
Comm Commercial and services 500 m, 750 m, 1 km, 1.5 km, 3 km, 5 km, 10 km, 

15 km
A23 Total distance of A2 and A3 roads within buffer 100 m, 150 m, 300 m, 400 m, 500 m, 750 m, 1 km, 

1.5 km, 3 km, 5 km
A1 Total distance of A1 roads within buffer 1 km, 1.5 km, 3 km, 5 km

Most variables were used in each of the four PM2.5 component models; however, the pre-processing procedure 
selected some variables for EC and OC that were not selected for Si and S, and vice versa because EC and OC monitor-
ing locations were not identical to Si and S locations.
aTruncated at 25 km and log10 transformed. blog10 and untransformed values both included. cTons per year of emissions 
from tall stacks. dVariable used for modeling Si, S only. eVariable used for modeling EC and OC only.
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with complete data for all the selected model 
covariates listed in Table 3 were included in 
the analysis.

Spatial prediction models. Model evalua-
tion. The selected models corresponding to 
lowest crossvalidated R2 all used PLS and uni
versal kriging. For all four PM2.5 components 
and for all numbers of PLS scores, kriging 
improved prediction accuracy, as indicated by 
the R2 and RMSEP statistics for the selected 
prediction models corresponding to the best 
performing PLSonly and PLS + universal 
kriging models (Table 4). Comparing the R2 
with and without universal kriging indicates 
that EC and OC were not much improved by 
kriging, whereas universal kriging improved 
prediction accuracy for Si and even more so for 
S. The ratio of the nugget to the sill (i.e., τ2/
σ2) also supports improved predictions with 
spatial smoothing by kriging. For a fixed range, 

smaller values of this ratio indicate that con
centrations at nearby locations receive greater 
weight when kriging. We see this relationship 
in Table 4 where τ2/σ2 was large when uni
versal kriging did little to improve prediction 
accuracy, and very small when universal krig
ing helped improve prediction accuracy.

As a sensitivity analysis we also carried out 
CV using nearest monitor exposure estimates. 
This method performed very poorly for EC 
and OC (R2s of 0 and 0.06, respectively), 
relatively poorly for Si (R2 = 0.36), but per
formed well for S (R2 = 0.88).

Interpretation of PLS. Figure 2 illustrates 
the geographic covariates that were most 
important for explaining pollutant variabil
ity. Specifically, Figure 2 summarizes the p × 1 
vector m, the vector such that Rm equals the 
5,298 exposures predicted with PLS only. Each 
element of m is a weight for a correspond
ing geographic covariate. Positive elements in 
m (i.e., values > 0 in Figure 2) indicate that 
higher values of the geographic covariate were 
associated with higher predicted exposure; the 
larger the absolute value of an element in m, 
the more the corresponding geographic covari
ate contributed to exposure prediction.

Population density was associated with 
larger predicted values of all pollutants, par
ticularly for EC, OC, and S. Industrial land 
use within the smallest buffer was very predic
tive of EC and OC, and evergreen forest land 
within a given buffer was strongly predictive 
of decreases in S. NDVI, industrial land use, 
emissions, and linelength variables were posi
tively associa ted with all exposures except Si, 
whereas all the distancetofeatures variables 
were negatively associated with all exposures 
except Si. The NDVI variables were more 
important for prediction of OC and S than 
they were for EC. For Si, the NDVI and tran
sitional land use variables appeared to be the 
most informative for prediction, with NDVI 
negatively and transitional land use posi
tively associated with Si exposure. Distance 
to features appeared to be informative for all 
four pollutants.

Exposure predictions. Figure 1 shows 
predicted concentrations across the United 

States, with finer detail illustrated for St. Paul, 
Minnesota. The EC and OC predictions were 
much higher in the middle of urban areas, and 
quickly dissi pated further from urban centers. 
S predictions were high across the midwest
ern and eastern states and in the Los Angeles 
area, and lower in the plains and mountains. Si 
predictions were low in most urban areas, and 
high in desert states.

Mean predicted EC and OC expo
sure concentrations predicted for MESA 
participants were 0.74 ± 0.18 and 2.17 ± 
0.36 µg/m3, respectively (Table 1). Mean pre
dicted Si and S exposure concentrations were 
0.09 ± 0.03 ng/m3 and 0.78 ± 0.15 µg/m3, 
respectively.

Health models. The results from the 
naïve health model that did not include any 
measurement error correction, as well as the 
results from the health model that included 
bootstrapcorrected point estimates and SEs 
of ^βx, are displayed in Table 5. The naïve 
analysis indicated significant positive associa
tions (p < 0.05) of CIMT with OC, Si, and 
S. There was also a positive but nonsignificant 
association between CIMT and EC. SEs for 
the EC and OC health effects were virtually 
unchanged when measurement error correc
tion was implemented, whereas the bootstrap
corrected SEs for Si and S were about 50% 
larger than their respective naïve estimates. 
The estimated biases resulting from the 
classical like measurement error were so small 
as to be uninteresting from an epidemiologic 
perspective because the point estimates of all 
four pollutants after implementing measure
ment error correction were unchanged out to 
three decimal places.

Discussion
Summary. Our comprehensive twostage 
approach to estimating longterm effects of air 
pollution exposure includes a national predic
tion model to estimate exposures to individual 
PM2.5 components and corrects for measure
ment error in the epidemiologic analysis using 
a methodology that accounts for differing 
amounts of spatial structure in the exposure 
surfaces. In a case study of four components 

Table 3. Subject-specific covariates for the MESA 
cohort used in health modeling.

Variable n
Mean ± SD 

or %
CIMT 5,501 0.68 ± 0.19
Age (years) 5,501 61.9 ± 10.1
Weight (lb) 5,501 173.0 ± 37.5
Height (cm) 5,501 166.6 ± 10.0
Waist (cm) 5,500 97.8 ± 14.1
Body surface area (m2) 5,501 1.9 ± 0.2
BMI (kg/m2) 5,501 28.2 ± 5.3
DBP 5,499 71.8 ± 10.3
Sex   

Female 2,872 52.2
Male 2,629 47.8

Race   
White (Caucasian) 2,168 39.4
Chinese American 675 12.3
Black (African American) 1,459 26.5
Hispanic 1,199 21.8

Site   
Winston-Salem 878 16.0
New York 867 15.8
Baltimore 776 14.1
St. Paul and Minneapolis 899 16.3
Chicago 998 18.1
Los Angeles 1,083 19.7

Education   
Incomplete high school 916 16.7
Completed high school 991 18.0
Some college 1,571 28.6
Completed college 2,010 36.5
Missing 13 0.2

Income per year   
< $12,000 566 10.3
$12,000–24,999 1,022 18.6
$25,000–49,999 1,543 28
$50,000–74,999 901 16.4
> $75,000 1,271 23.1
Missing 198 3.6

Hypertension   
No 3,106 56.5
Yes 2,395 43.5

Statin use   
No 4,681 85.1
Yes 817 14.9
Missing 3 0.1

Table 4. Cross-validated R2 and RMSEP for each component of PM2.5, for both primary models and com-
parison PLS-only models, and the estimated kriging parame ters from the likelihood fit on the entire data 
set for each pollutant.

Correction Model

EC OC Si S

3 PLS scores 2 PLS scores 2 PLS scores 2 PLS scores
R2 PLS only 0.79 0.60 0.36 0.63

PLS + UK 0.82 0.69 0.62 0.95
RMSEP PLS only 0.11 0.22 0.10 0.13

PLS + UK 0.10 0.20 0.08 0.05
Estimated UK 

parameters
(τ2)a 0.0074 0.0251 0.0043 0.0007
(σ2)b 0.0025 0.0199 0.0086 0.0251
(φ)c 413 304 2,789 2,145

(τ2/σ2) 2.96 1.26 0.5 0.03

UK, universal kriging.
aNugget used in kriging. bPartial sill used in kriging. cRange used in kriging.
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of PM2.5 and measurement error–corrected 
associations between these components and 
CIMT in the MESA cohort, corrected SEs 
corresponding to pollutants that exhibi ted sig
nificant spatial structure (i.e., Si and S) were 
50% larger than naïve estimates, whereas cor
rected SE estimates for EC and OC were very 
similar to the naïve estimates.

National exposure models. We find that 
a national approach to exposure modeling is 
reasonable and performs well in terms of pre
diction accuracy. Our primary PLS + universal 

kriging models resulted in crossvalidated 
R2 ≤ 0.95 (for predicting S concentrations) 
and ≥ 0.62 (for predicting Si) for any of the 
PM2.5 components. Use of kriging improved 
the crossvalidated R2 for all four pollutants 
compared with models that used PLS only, 
although the improvement was not equal 
across all four pollutants. These results are 
useful in terms of understanding the spa
tial nature of our exposure surfaces. For EC 
and OC, the R2 only improved by ≤ 0.09 
when kriging was used compared to when 

PLS alone was used, indicating little large
scale spatial structure in these pollutants. For 
Si, the R2 improved from 0.36 to 0.62; and 
for S, from 0.63 to 0.95. This indicates that 
S (and to a lesser extent Si) had substantial 
largescale spatial structure that kriging was 
able to exploit. For all models, using kriging 
improved R2, indicating that no prediction 
accuracy was lost (and quite a bit stood to be 
gained, when spatial structure was present) 
by using PLS+universal kriging as opposed 
to using PLS alone. Our results also suggest 

Figure 2. Coefficients of the PLS fit, where the coefficients describe the associations of each geographic covariate with exposure for (A) EC, (B) OC, (C) Si, and 
(D) S. The size of each circle represents covariate buffer size, with larger circles indicating larger buffers. Each closed circle for “distance to feature” represents 
a different feature (listed in Table 2): A1 road, nearest road, airport, large airport, port, coastline, commercial or service center, railroad, and rail yard. Variable 
abbreviations and buffer sizes are indicated in Table 2. Most of the variables shown here were used for modeling all four pollutants, but not all. Variables used 
for modeling Si and S but not EC and OC were PM2.5 and PM10 emissions, streams and canals within a 3-km buffer, other urban or built-up land use within a 400-m 
buffer, lakes within a 10-km buffer, industrial and commercial complexes within a 15-km buffer, and herbaceous rangeland within a 3-km buffer. The variables 
used for modeling EC and OC but not Si and S were industrial land use within 1- and 1.5-km buffers.
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that exposure models such as the ones we 
have built may be preferable in many cases to 
simpler approaches such as nearest monitor 
interpolation. Our models produced cross
validated R2 that were higher than the nearest
monitor approach, and our results indicate 
that unless there is considerable spatial struc
ture in the exposure surface, a substantial 
amount of prediction accuracy may be lost 
when the nearestmonitor approach is used.

We used twostage modeling instead of 
joint modeling of exposure and health for a 
variety of reasons. One is pragmatic: Joint 
modeling is computationally intensive, so our 
twostage approach is especially desirable when 
modeling multi ple pollutants. Joint modeling 
may also be more sensitive to out liers in the 
health data. Twostage modeling also appeals 
more intuitively in the context of modeling 
multi ple health outcomes because it assigns 
one exposure per participant that can then be 
used to model a number of different health 
outcomes. Joint modeling, on the other hand, 
would assign different levels of the same pol
lutant depending on what health outcome was 
being modeled.

Epidemiologic case study. In this case 
study, we focused on four PM2.5 components 
selected to gain insight into the sources or 
features of PM2.5 that might contribute to 
the effects of PM2.5 on cardio vascular disease. 
EC and OC were chosen as markers of pri
mary emissions from combustion processes, 
with OC also including contributions from 
secondary organic aerosols formed from atmo
spheric chemical reactions; Si was chosen as a 
marker of crustal dust; and S was chosen as a 
marker of sulfate, an inorganic aerosol formed 
secondarily from atmospheric chemical reac
tions (Vedal et al., in press). The mechanisms 
whereby exposures to PM2.5 or PM2.5 com
ponents produce cardiovascular effects such 

as athero sclerosis are not well understood, 
although several mechanisms have been pro
posed (Brook et al. 2010). [For discussion of 
other studies examin ing the effects of these 
pollutants, see Vedal et al. (in press).]

The relatively poor performance of nearest 
monitor interpolation for EC, OC, and Si 
raises concerns about epidemiologic infer
ences based on predictions derived from that 
method. For S, the only pollutant for which 
our models and nearestmonitor interpolation 
performed comparably, the estimated increase 
in CIMT for a 1unit increase in exposure 
based on nearestmonitor interpolation was 
0.074 ± 0.018, comparable to the naïve infer
ence made using predictions from our expo
sure models (0.055 ± 0.017). However, there 
is no way to correct for measurement error 
using this method, which is another significant 
advantage of our models.

Naïve health analyses based on exposure 
predictions from our national models indicated 
significant associations of CIMT with 1unit 
increases in average OC, Si, and S, but not EC. 
Using the parame ter bootstrap to account and 
correct for measurement error led to notice
ably larger SEs and wider CIs for Si and S; 
however, OC, Si, and S were still significantly 
associated with CIMT even after correcting for 
measurement error.

Measurement error correction. For EC 
and OC, using PLS alone was sufficient to 
make accurate predictions, whereas the spatial 
smoothing from universal kriging substan
tially improved prediction accuracy for Si and 
S. It is accordingly no coincidence that the 
bootstrap corrected SE estimates for EC and 
OC were unchanged from the naïve estimates, 
whereas the corrected SE estimates for Si and 
S were about 50% larger (and the resulting 
95% CIs 50% wider) than their respective 
naïve estimates. The fact that the EC and OC 
exposure predictions were derived mostly from 
the PLSonly models, which assumed inde
pendent residuals, implies that the Berkson
like error was almost pure Berkson error (i.e., 
independent across location), which was cor
rectly accounted for by naïve SE estimates. 
On the other hand, much more smoothing 
took place for Si and S, which induced spatial 
correlation in the residual difference between 
true and predicted exposure. Accordingly, 
SEs that correctly account for the Berkson
like error in these two pollutants are inflated 
because the correlated errors in the predictions 
translate into correlated residuals in the disease 
model that are not accounted for by naïve SE 
estimates (Szpiro et al. 2011b). The fact that 
the SE estimates from the parame ter boot
strap using λ = 1 (which accounts for both 
Berksonlike and classicallike error) and using 
λ = 0 (which accounts only for Berksonlike 
error) were so similar further indicates that the 
larger corrected SE estimates were most likely 

a result of the Berksonlike error. None of our 
measurement error analyses indicated that any 
important bias was induced by the classical
like error.

Limitations and model considerations. 
Although our exposure models performed 
well, there is still room for improvement in 
prediction accuracy, especially for the EC, 
OC, and Si models, which had crossvalidated 
R2 that could be improved upon. For these 
models it is possible that inclusion of addi
tional geographic covariates in the PLS would 
help improve model performance. Examples 
include woodburning sources within a given 
buffer for EC and OC concentrations, or 
dust and sand sources for Si. These covariates 
are currently not available in our databases. 
Furthermore, although it is possible to inter
pret the individual covariates in PLS compo
nents (Figure 2), such interpretations need 
to be regarded with caution because inclu
sion of many correlated covariates can lead to 
apparent associations that are counter intuitive 
and the opposite of what might be expected 
scientifically. Finally, PLS does not consider 
interactions or nonlinear combinations of the 
geographic covariates, factors which could 
improve model performance.

Implications and future directions. Our 
results show that careful investigation of the 
exposure model characteristics can help to 
clarify the implications for the subsequent 
epidemiologic analyses that use the predicted 
exposures. As noted by Szpiro et al. (2011a), 
an overarching framework that considers 
the end goal of health modeling seems more 
appealing than treating exposure models as 
if they exist for their own sake. This analysis 
serves as an example that will inform ongoing 
efforts by our group and others to construct 
and utilize exposure prediction models that 
are most suitable for epidemiologic studies.

Our epidemiologic inference was based on 
one health model per pollutant. One might 
reasonably be interested in how multi ple pol
lutants jointly affect health. However, current 
literature for measurement error correction 
does not address models that use multi ple 
predicted pollutants as exposures. Our group 
is currently working on methods to address 
this challenge.
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